Woodside C of E Primary School

Hear Єwood $^{\text {d }}$

Church of England Academy Trust

Calculation Policy

The following calculation policy has been devised to meet requirements of the National Curriculum 2014 for the teaching and learning of mathematics, and is also designed to give pupils a consistent and smooth progression of learning in calculations across the school. Please note that early learning in number and calculation in Reception follows the "Development Matters" EYFS document, and this calculation policy is designed to build on progressively from the content and methods established in the Early Years Foundation Stage.

It is essential that when teaching calculation the three aims of the new National Curriculum 2014 are fulfilled Fluency, Problem Solving and Reasoning. To illustrate problem solving within calculation, pupils can be posed with questions similar to:

From the selection of digit cards, how can you arrange the digits to get a product closest to 1500?

X

This illustrates opportunities to open up the learning as opposed to providing pupils with a diet of closed questions.

Age stage expectations

The calculation policy is organised according to age stage expectations as set out in the National Curriculum 2014, however it is vital that pupils are taught according to the stage that they are currently working at, being moved onto the next level as soon as they are ready, or working at a lower stage until they are secure enough to move on.

Providing a context for calculation:

It is important that any type of calculation is given a real life context or problem solving approach to help build children's understanding of the purpose of calculation, and to help them recognise when to use certain operations and methods when faced with problems. This must be a priority within calculation lessons.

Choosing a calculation method:

Children need to be taught and encouraged to use the following processes in deciding what approach they will take to a calculation, to ensure they select the most appropriate method for the numbers involved:

For more information on calculation methods, the NCETM have provided a range of excellent video clips to support the teaching of mathematics:

To work ouf a fricky calculafion:
Approximafe,
Calculafe,
Check 辞 mafe!

Year 1 and Reception (Exceeding)

Pupils should :

- use lots of practical apparatus, arrays and picture representations
- Be taught to understand the difference between 'grouping' objects (How many groups of 2 can you make?) and 'sharing' (Share these sweets between 2 people)
- Be able to count in multiples of $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s .
- Find half of a group of objects by sharing into 2 equal groups.

Use number lines, number tracks to divide. (Model using bead strings)
$6 \div 2=3$

Key Vocabulary: share, share equally, one each, two each..., group, groups of, lots of, array
Key number skills needed for division at Y1:

- Solve one-step problems involving multiplication and division, by calculating the answer using concrete objects, pictorial representations arrays with the support of the teacher
- Through grouping and sharing small quantities, pupils begin to understand, division, and finding simple fractions of objects, numbers and quantities.
- They make connections between arrays, number patterns, and counting in twos, fives and tens.
- Derive and recall division facts for 2,5 and 10 times tables.

Key Vocabulary: share, share equally, one each, two each..., group, equal groups of, lots of, array, divide, divided by, divided into, division, grouping, number line, left, left over
Key number skills needed for division at Y2:
\square Count in steps of 2,3 , and 5 from 0
\square Recall and use multiplication and division facts for the 2,5,10,3 and 4 multiplication tables, including recognising odd and even numbers.

- Calculate mathematical statements for multiplication and division within the multiplication tables and write them using the x, \div and $=$ signs.
\square Show that multiplication of two numbers can be done in any order (commutative) and division of one number by another cannot.
\square Solve problems involving multiplication and division, using materials, arrays, repeated addition, mental methods, and multiplication and division facts, including problems in contexts.

Step 3 Only taught when pupils can calculate 'remainders'.

Key Vocabulary: share, share equally, one each, two each..., group, equal groups of, lots of, array, divide, divided by, divided into, division, grouping, number line, left, left over, inverse, short division, =carry', remainder, multiple

Key number skills needed for division at Y 3 :

\square Recall and use multiplication and division facts for the $2,3,4,5,6,8,10$ and 11 multiplication tables (through doubling, connect the 2, 4 and 8s).
\square Write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for two-digit numbers times one-digit numbers, using mental and progressing to for-mal written methods.
\square Solve problems, in contexts, and including missing number problems, involving multiplication and division.
\square Pupils develop efficient mental methods, for example, using multiplication and division facts (e.g. using $3 \times 2=6,6 \div 3=2$ and $2=6 \div 3)$ to derive related facts $(30 \times 2=60$, so $60 \div 3=20$ and $20=60 \div 3$).
\square Pupils develop reliable written methods for division, starting with calculations of 2 -digit numbers by 1-digit numbers and progressing to the formal written method of short division.

Key Vocabulary: share, share equally, one each, two each..., group, equal groups of, lots of, array, divide, divided by, divided into, division, grouping, number line, left, left over, inverse, short division, "carry", remainder, multiple, divisible by, factor

Key number skills needed for division at $y 4$:
\square Recall multiplication and division facts for all numbers up to 12×12.
\square Use place value, known and derived facts to multiply and divide mentally, including: multiplying and dividing by 10 and 100 and 1.
\square Pupils practise to become fluent in the formal written method of short division with exact answers when dividing by a one-digit number
\square Pupils practise mental methods and extend this to three-digit numbers to derive facts, for example $200 \times 3=600$ so $600 \div 3=200$
\square Pupils solve two-step problems in contexts, choosing the appropriate operation, working with increasingly harder numbers. This should include correspondence questions such as three cakes shared equally between 10 children.

Key Vocabulary: share, share equally, one each, two each..., group, equal groups of, lots of, array, divide, divided by, divided into, division, grouping, number line, left, left over, inverse, short division, "carry", remainder, multiple, divisible by, factor, inverse, quotient, prime number, prime factors, composite number (non-prime)
Key number skills needed for division at Y_{5} :
\square Recall multiplication and division facts for all numbers up to 12×12 (as in Y4).
\square Multiply and divide numbers mentally, drawing upon known facts.
\square Identify multiples and factors, including finding all factor pairs of a number, and common factors of two number.
\square Solve problems involving multiplication and division where larger numbers are decomposed into their factors.
— Multiply and divide whole numbers and those involving decimals by 10,100 and 1000.
\square Use the vocabulary of prime numbers, prime factors and composite (non-prime) numbers.
(Work out whether a number up to 100 is prime, and recall prime numbers to 19.
\square Divide numbers up to 4 digits by a one-digit number using the formal written method of short division and interpret remainders appropriately for the context
\square Use multiplication and division as inverses.
\square Interpret non-integer answers to division by expressing results in different ways according to the context, including with remainders, as fractions, as decimals or by rounding (e.g. $98 \div 4=24 \mathrm{r} 2=24 . / 2=24.5 \approx 25$).
\square Solve problems involving combinations of all four operations, including understanding of the equals sign, and including division for scaling by different fractions and problems involving simple rates.

This then develops into standard long division:

432 -	15	be	com	nes							
				2	8		8				
	1	5	4	3	2	0					
			3	0	1						
				3	2						
				2	0						
					2	0					
				1	2						
							0				28.8

Key Vocabulary: As Y5, \& common factor

Key number skills needed for division at Y6:
\square Recall and use multiplication and division facts for all numbers to 12×12 for more complex calculations
\square Divide numbers up to 4 digits by a two-digit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context. Use short division where appropriate.
\square Perform mental calculations, including with mixed operations and large numbers.
\square Identify common factors, common multiples and prime numbers.
\square Solve problems involving all 4 operations.
I Use estimation to check answers to calculations and determine accuracy, in the context of a problem.
\square Use written division methods in cases where the answer has up to two decimal places.
\square Solve problems which require answers to be rounded to specified degrees of accuracy.

Year 1 and Reception (Exceeding)

Multiply using arrays and number lines for repeated addition:

Arrays

Number lines

Key vocabulary: groups of, lots of, times, array, altogether, multiply, count
Key skills for multiplication at Y 1 :

- Count in multiples of 2,5 and 10.
- Know and use the 2,5 and 10 times tables.
- Solve one-step problems involving multiplication, by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher.
- Make connections between arrays, number patterns, and counting in twos, fives and tens.
- Begin to understand doubling using concrete objects and pictorial representations.

Key vocabulary: groups of, lots of, times, array, altogether, multiply, count, multiplied by, repeated addition, column, row, commutative, sets of, equal groups, times as big as, once, twice, three times...
Key skills for multiplication at Y 2 :
\square Count in steps of 2,3,4 and 5 from zero, and in 10s from any number.
\square Recall and use multiplication facts from the 2,3,4,5 and 10 multiplication tables, including recognising odds and evens.
\square Write and calculate number statements using the x and $=$ signs.
\square Show that multiplication can be done in any order (commutative).
\square Solve a range of problems involving multiplication, using concrete objects, arrays, repeated addition, mental methods, and multiplication facts.
\square Pupils use a variety of language to discuss and describe multiplication.

Year 3 Multiply 2-digits by a single digit number

Introduce the grid method for multiplying 2-digit by single-digits:

Eg. $\quad 23 \times 8=184$
Link the layout of the grid to an array initially:

X	20	3
8	160	24

$160+24=184$

Introduce the grid method with children physically making an array to represent the calculation (e.g. make 8 lots of 23 with 10 s and 1 s place value counters), then translate this to grid method format (see video clip).

To do this, children must be able to:

- Partition numbers into tens and units
- Multiply multiples of ten by a single digit (e.g. 20×4) using their knowledge of multiplication facts and place value
- Recall and work out multiplication facts in the 2, 3, 4, 5, 8 and 10 times tables.
- Work out multiplication facts not known by repeated addition or other taught mental strategies (e.g. by commutative law, working out near multiples and adjusting, using doubling etc.) Strategies to support this are repeated addition using a number line, bead bars and arrays:

$9 \times 4=36$

6

Key vocabulary: groups of, lots of, times, array, altogether, multiply, count, multiplied by, repeated addition, column, row, commutative, sets of, equal groups, times, _times as big as, once, twice, three times..., partition, grid method, multiple, product, tens, units, value Key skills for multiplication:
\square Recall and use multiplication facts for the 2, 3, 4, 5, 6, 8, 10 and 11 multiplication tables, and multiply multiples of 10 .
\square Write and calculate number statements using the multiplication tables they know, including 2-digit x single-digit, drawing upon mental methods, and progressing to reliable written methods.
\square Solve multiplication problems, including missing number problems.
प Develop mental strategies using commutativity (e.g. $4 \times 12 \times 5=4 \times 5 \times 12=20 \times 12=240$)
\square Solve simple problems in contexts, deciding which operations and methods to use.
I Develop efficient mental methods to solve a range of problems e.g using commutativity ($4 \times 12 \times 5=$ $4 \times 5 \times 12=20 \times 12=240$) and for missing number problems $\times 5=20,3 x=18, x=32$

Key vocabulary: groups of, lots of, times, array, altogether, multiply, count, multiplied by, repeated addition, array, column, row, commutative, groups of, sets of, lots of, equal groups, times, multiply, times as big as, once, twice, three times... partition, grid method, total, multiple, product, sets of, inverse
Key skills for multiplication at Y4:
\square Count in multiples of $6,7,9,25$ and 1000
\square Recall multiplication facts for all multiplication tables up to 12×12.
\square Recognise place value of digits in up to 4-digit numbers
[Use place value, known facts and derived facts to multiply mentally, e.g. multiply by $1,10,100$, by 0 , or to multiply 3 numbers.
प Use commutativity and other strategies mentally $3 \times 6=6 \times 3,2 \times 6 \times 5=10 \times 6,39 \times 7=30$ $\times 7+9 \times 7$.
\square Solve problems with increasingly complex multiplication in a range of contexts.

- Count in multiples of $6,7,9,25$ and 1000
\square Recognise the place value of each digit in a four-digit number (thousands, hundreds, tens, and ones)

Key vocabulary groups of, lots of, times, array, altogether, multiply, count, multiplied by, repeated ad-dition, column, row, commutative, sets of, equal groups, _times as big as, once, twice, three times..., partition, grid method, total, multiple, product, inverse, square, factor, integer, decimal, short/long multiplication, =carry'
Key skills for multiplication at Y 5 :
Identify multiples and factors, using knowledge of multiplication tables to 12×12.
Solve problems where larger numbers are decomposed into their factors
Multiply and divide integers and decimals by 10,100 and 1000
Recognise and use square and cube numbers and their notation
Solve problems involving combinations of operations, choosing and using calculations and methods appropriately.

Key vocabulary: groups of, lots of, times, array, altogether, multiply, count, multiplied by, repeated ad-dition, array, column, row, commutative, sets of, equal groups, times as big as, once, twice, three times... partition, grid method, total, multiple, product, inverse, square, factor, integer, decimal, short / long mul-tiplication, "carry", tenths, hundredths, decimal Key skills for multiplication at Y6:
\square Recall multiplication facts for all times tables up to 12×12 (as Y4 and Y5).
\square Multiply multi-digit numbers, up to 4-digit $\times 2$-digit using long multiplication.
\square Perform mental calculations with mixed operations and large numbers.
\square Solve multi-step problems in a range of contexts, choosing appropriate combinations of opera-tions and methods.
\square Estimate answers using round and approximation and determine levels of accuracy.
\square Round any integer to a required degree of accuracy.

Year 1 and Reception (Exceeding)

- Begin to draw their own number line to solve calculations. They do not need to start at 1.

Key vocabulary: add, more, plus, and, make, altogether, total, equal to, equals, double, most, count on, number line
Key skills for addition at Y 1 :
\square Read and write numbers to 100 in numerals, incl. 1-20 in words
\square Recall bonds to 10 and 20, and addition facts within 20

- Count to and across 100
- Count in multiples of 12,5 and 10
\square Show that adding can be done in any order (the commutative law)
- Solve simple 1-step problems involving addition, using objects, number lines and pictorial representations.

To support understanding, pupils may physically make and carry out the calculation with Dienes Base 10 apparatus or place value counters, then compare their practical version to the written form, to help them to build an understanding of it.

Key vocabulary: add, more, plus, and, make, altogether, total, equal to, equals, double, most, count on, number line, sum, tens, units, partition, addition, column, tens boundary

Key skills for addition at Y2:

© Add a 2-digit number and ones (e.g. $27+6$)
\square Add a 2-digit number and tens (e.g. $23+40$)
\square Add pairs of 2-digit numbers (e.g. $35+47$)
\square Add three single-digit numbers (e.g. $5+9+7$)
\square Show that adding can be done in any order (the commutative law).
\square Recall bonds to 20 and bonds of tens to 100 ($30+70$ etc.)
\square Count in steps of 2, 3, 4 and 5 and count in tens from any number.

- Understand the place value of 2-digit numbers (tens and ones)
\square Compare and order numbers to 100 using < > and = signs.
\square Read and write numbers to at least 100 in numerals and words.
\square Solve problems with addition, using concrete objects, pictorial representations, involving numbers, quantities and measures, and applying mental and written methods.

Key vocabulary: add, more, plus, and, make, altogether, total, equal to, equals, double, most, count on, number line, sum, tens, units, partition, plus, addition, column, tens boundary, hundreds boundary, increase, vertical, _carry', expanded, compact
Key skills for addition at Y3:
QRead and write numbers to 1000 in numerals and words.
\square Add 2-digit numbers mentally, incl. those exceeding 100.

- Add a three-digit number and ones mentally ($175+8$)
\square Add a three-digit number and tens mentally ($249+50$)
\square Add a three-digit number and hundreds mentally $(381+400)$
\square Estimate answers to calculations, using inverse to check answers.
\square Solve problems, including missing number problems, using
\square number facts, place value, and more complex addition.
C Count in steps of 6,8 and 11 .
\square Recognise place value of each digit in 3-digit numbers (hundreds, tens, ones.)
- Continue to practise a wide range of mental addition strategies, ie. number bonds, adding the nearest multiple of $10,100,100$ and adjusting, using near doubles, partitioning and recombining.

Key vocabulary: add, more, plus, and, make, altogether, total, equal to, equals, double, most, count on, number line, sum, tens, units, partition, plus, addition, column, tens boundary, hundreds boundary, increase, vertical, "carry", expanded, compact, thousands, hundreds, digits, inverse

Key skills for addition at Y4:

- Select most appropriate method: mental, jottings or written and explain why.
\square Recognise the place value of each digit in a four-digit number.
\square Round any number to the nearest 10,100 or 1000.
- Count in steps of 7,9 and 12 .
\square Estimate and use inverse operations to check answers.
\square Solve 2-step problems in context, deciding which operations and methods to use and why.
\square Find 1000 more or less than a given number.
- Continue to practise a wide range of mental addition strategies, ie. number bonds, add the nearest multiple of $10,100,1000$ and adjust, use near doubles, partitioning and recombining.
\square Add numbers with up to 4 digits using the formal written method of column addition I Solve 2-step problems in contexts, deciding which operations and methods to use and why.

Key vocabulary: add, more, plus, and, make, altogether, total, equal to, equals, double, most, count on, number line, sum, tens, units, partition, plus, addition, column, tens boundary, hundreds boundary, increase, "carry", expanded, compact, vertical, thousands, hundreds, digits, inverse \& decimal places, decimal point, tenths, hundredths, thousandths

Key skills for addition at Y 5 :

- Add numbers mentally with increasingly large numbers, using and practising a range of mental strategies ie. add the nearest multiple of $10,100,100$ and adjust; use near doubles, inverse, partitioning and recombining; using number bonds.
\square Use rounding to check answers and accuracy.
- Solve multi-step problems in contexts, deciding which operations and methods to use and why.
\square Read, write, order and compare numbers to at least 1 million and determine the value of each digit.
\square Round any number up to 1000000 to the nearest $10,100,1000,10000$ and 100000.
\square Add numbers with more than 4 digits using formal written method of column addition.

Key vocabulary: add, more, plus, and, make, altogether, total, equal to, equals, double, most, count on, number line, sum, tens, units, partition, plus, addition, column, tens boundary, hundreds boundary, increase, ."carry", expanded, compact, vertical, thousands, hundreds, digits, inverse, decimal places, decimal point, tenths, hundredths, thousandths
Key skills for addition at Y6:
@Perform mental calculations, including with mixed operations and large numbers, using and practising a range of mental strategies.
\square Solve multi-step problems in context, deciding which operations and methods to use and why. I Use estimation to check answers to calculations and determine, in the context of a problem, levels of accuracy.
\square Read, write, order and compare numbers up to 10 million and determine the value of each digit.
\square Round any whole number to a required degree of accuracy.
\square Pupils understand how to add mentally with larger numbers and calculations of increasing complexity.

Year 1 and Reception (Exceeding)

Key vocabulary: equal to, take, take away, less, minus, subtract, leaves, distance between, how many more, how many fewer / less than, most, least, count back, how many left, how much less is_?
Key skills for subtraction at Y 1 :

- Given a number, say one more or one less.
— Count to and over 100, forward and back, from any number.
\square Represent and use subtraction facts to 20 and within 20.
\square Subtract with one-digit and two-digit numbers to 20 , including zero.
\square Solve one-step problems that involve addition and subtraction, using concrete objects (ie bead string, objects, cubes) and pictures, and missing number problems.
\square Read and write numbers from 0 to 20 in numerals and words.

Year 2 Subtract with 2-digit numbers

Subtract on a number line by counting back, aiming to develop mental subtraction skills.

This strategy will be used for:

- 2-digit numbers subtract units (by taking away / counting back) e.g. 36-7
- 2-digit numbers subtract tens (by taking away / counting back) e.g. 48-30
- Subtracting pairs of 2-digit numbers (see below:)

Subtracting pairs of 2-digit numbers on a number line:

47-23 = 24 Partition the second number and subtract it in tens and units, as below:

Move towards more efficient jumps back, as below:

Teaching children to bridge through ten can help them to become more efficient, for example 42-25:

Combine methods with use of a hundred square to reinforce understanding of number velue and order.

Mental strategy - subtract numbers close together by counting on:

Many mental strategies are taught. Children are tought to recognise that when numbers are close together, it is more efficient to count on the difference. They need to be clear about the relationship between addition and subtraction.

Key vocabulary: equal to, take, take away, less, minus, subtract, leaves, distance between, how many more, how many fewer / less than, most, least, count back, how many left, how much less is_? difference, count on, strategy, partition, tens, units

Key skills for subtraction at Y2:

\square Recognise the place value of each digit in a two-digit number.
\square Recall and use subtraction facts to 20 fluently, and derive and use related facts up to 100.
— Subtract using concrete objects, pictorial representations, 100 squares and mentally, including: a twodigit number and ones, a two-digit number and tens, and two two-digit numbers.
\square Show that subtraction of one number from another cannot be done in any order.
\square Recognise and use inverse relationship between addition and subtraction, using this to check calculations and missing number problems.
\square Solve simple addition and subtraction problems including measures, using concrete objects, pictorial representation, and also applying their increasing knowledge of mental and written methods.
\square Read and write numbers to at least 100 in numerals and in words.

Year 3 Subtracting with 2 and 3 -digit numbers.

Introduce partitioned column subtraction method.

When learning to 'exchange', explore 'partitioning in different ways' so that pupils understand that when you exchange, the VALUE is the same ie $72=70+2=60+12=50+22 \mathrm{etc}$. Emphasise that the value hasn't changed, we have just partitioned it in a different way.

$$
\begin{array}{ll}
\hline \text { STEP 2' introduce } 72-47 \\
\text { 'exchanging' through } \\
\text { practical subtraction. Make } \\
\text { the larger number with Base }
\end{array}
$$ 10 , then subtract 47 from it.

Before subtracting ' 7 ' from the 72 blocks, they will need to exchange a row of 10 for ten units. Then subtract 7 , and subtract 4 tens.

STEP 3. Once pupils are secure with the understanding of 'exchanging', they can use the partitioned column method to subtract any 2 and 3-digit numbers.

Subtracting money: partition into egg. $\mathrm{E} 1+30 \mathrm{p}+8 \mathrm{p}$

Counting on as a mental strategy for subtraction:

Continue to reinforce counting on as a strategy for close-together numbers (e.g. 121-118), and also for numbers that are 'nearly' multiples of $10,100,1000$ or $£$ s, which make it easier to count on (e.9. 102-89, 131-79, or calculating change from $£ 1$ etc.).

- Start at the smaller number and count on in tens first, then count on in units to find the rest of the difference:

Key vocabulary: equal to, take, take away, less, minus, subtract, leaves, distance between, how many more, how many fewer / less than, most, least, count back, how many left, how much less is_? difference, count on, strategy, partition, tens, units exchange, decrease, hundreds, value, digit
Key skills for subtraction at Y3:
a Subtract mentally a: 3-digit number and ones, 3-digit number and tens, 3-digit number and hundreds
\square Estimate answers and use inverse operations to check.
\square Solve problems, including missing number problems.

- Find 10 or 100 more or less than a given number.
\square Recognise the place value of each digit in a 3 -digit number
- Counting up differences as a mental strategy when numbers are close together or near multi-ples of 10 (see examples above)
\square Read and write numbers up to 1000 in numerals and words.
- Practise mental subtraction strategies, such as subtracting near multiples of 10 and adjusting (e.g. subtracting 19 or 21), and select most appropriate methods to subtract, explaining why.

Year 4 Subtract with up to 4 -digit numbers

Partitioned column subtraction with 'exchanging' (decomposition):

$2754-1562=1192$
$2000+700$
$-1000+500+60+4$
$1000+100+90+2$

Compact column subtraction (see video)
 towards more complex numbers and values. Use place value counters to reinforce 'exchanging'.

Subtracting moncy: partition into $£ 1+30+5$ for example.

To introduce the compact method, ask children to perform a subtraction calculation with the familiar partitioned column subtraction then display the compact version for the calculation they have done. Ask pupils to consider how it relates to the method they know, what is similar and what is different, to develop an understanding of it

Always encourage children to consider the best method for the numbers involvedmental, counting on, counting back or written method

Mental strategics

Approximate,
Calculate,
Check it mate!

Key vocabulary: equal to, take, take away, less, minus, subtract, leaves, distance between, how many more, how many fewer / less than, most, least, count back, how many left, how much less is_? difference, count on, strategy, partition, tens, units exchange, decrease, hundreds, value, digit, inverse
Key skills for subtraction at y 4 :
0Subtract by counting on where numbers are close together or they are near to multiples of 10,100 etc.

- Children select the most appropriate and efficient methods for given subtraction calculations.
- Estimate and use inverse operations to check answers.
\square Solve addition and subtraction 2-step problems, choosing which operations and methods to use and why.
\square Solve simple measure and money problems involving fractions and decimals to two decimal places.
- Find 1000 more or less than a given number.
\square Count backwards through zero, including negative numbers.
\square Recognise place value of each digit in a 4-digit number Round any number to the nearest 10, 100 or 1000 \square Solve number and practical problems that involve the above, with increasingly large positive numbers.

Key vocabulary: equal to, take, take away, less, minus, subtract, leaves, distance between, how many more, how many fewer / less than, most, least, count back, how many left, how much less is_? difference, count on, strategy, partition, tens, units exchange, decrease, hundreds, value, digit, inverse, tenths, hundredths, decimal point, decimal

Key skills for subtraction at Y 5 :

© Subtract numbers mentally with increasingly large numbers .
\square Use rounding and estimation to check answers to calculations and determine, in a range of contexts, levels of accuracy.
\square Solve addition and subtraction multi-step problems in context, deciding which operations and methods to use and why.
\square Read, write, order and compare numbers to at least 1 million and determine the value of each digit.

- Count forwards or backwards in steps of powers of 10 for any given number up to 1 million.
\square Interpret negative numbers in context, counting forwards and backwards with positive and negative integers through 0 .
\square Round any number up to 1 million to the nearest $10,100,1000,10000$ and 100000.

Key vocabulary: equal to, take, take away, less, minus, subtract, leaves, dis-tance between, how many more, how many fewer / less than, most, least, count back, how many left, how much less is_? difference, count on, strategy, partition, tens, units exchange, decrease, hundreds, value, digit, inverse, tenths, hundredths, decimal point, decimal

Key skills for subtraction at Y6:

Q Solve addition and subtraction multi-step problems in context, deciding which operations and methods to use and why.
\square Read, write, order and compare numbers up to 10 million and determine the value of each digit
\square Round any whole number to a required degree of accuracy
\square Use negative numbers in context, and calculate intervals

- across zero.
\square Children need to utilise and consider a range of mental subtraction strategies, jottings and written methods before choosing how to calculate.

